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Abstract- The tremendous demand for reliable high-speed broadband wireless links is expected to continue growing in the 
future due to the rapid increase in the number of users, amount of data traffic, and number of applications. The Reconfigurable 
Intelligent Surfaces (RIS) has been promised as a potential technique for future Sixth-Generation (6G) communication 
systems. The RIS can passively phase-shift the electromagnetic waves to enhance coverage and capacity at low power and 
hardware costs. It can provide high beamforming gain that requires accurate channel state information (CSI). The CSI 
acquisition is too hard to develop for two reasons: First, the passive nature of RIS does not allow the transfer and processing 
of pilot signals. Second, the dimensions of the cascaded channel between transceivers increase with the large number of RIS 
elements, which yields high training overhead and computational complexity. In this project, a Time Division Duplex (TDD)-
RIS-assisted system is considered, where the CSI in the downlink can be obtained based on the estimated uplink channel. In 
addition, the cascaded channel i.e. (The cascade of User-RIS and RIS-base station (BS) channels) in RIS-assisted systems 
shows the sparsity when transformed into the angular domain. Therefore, the channel estimation in the TDD-RIS-assisted 
system is formulated as a sparse signal recovery problem, which can be solved by Compressed Sensing (CS) algorithms, 
especially Orthogonal Matching Pursuit (OMP) algorithm and Double Structure-OMP (DS-OMP) approach. The Simulation 
results demonstrate our proposed OMP approach has significantly improvement compared to the conventional least square 
estimator. Furthermore, the DS-OMP approach has a small improvement over the OMP algorithm in terms of Normalized 
Mean Square Error (NMSE) performance. On the other hand, the OMP has less complexity than the DS-OMP. 
Keywords: Reconfigurable Intelligent Surfaces (RIS), Time Division Duplex (TDD)-RIS assisted system, Compressed Sensing CS Algorithm, Normalized 
Mean Square Error (NMSE) performance. 

I. INTRODUCTION 
Wireless communication systems are changing dramatically as a high data rate and quality of service are in soaring demand. 
5G wireless communication has already been released and is currently in service in many countries. Therefore, 6G wireless 
communication has received the full attention of the researchers. The 6G wireless networks include an ultra-high data rate, 
high reliability, global coverage, low latency, and high energy efficiency. To meet these requirements, we need more advanced 
network devices and new techniques for efficient wireless communication. The literature published in recent years suggests 
that, for 6G, the main ideas are terahertz communication, artificial intelligent and Reconfigurable intelligent surfaces (RISs), 
also known as intelligent reflecting surfaces (IRSs), or large intelligent surfaces (LISs) [1-6]. The IRS consists of a large 
number of low-cost passive reflecting elements each being able to reflect the incident signal independently with an adjustable 
phase shift to collaboratively achieve 3D passive beamforming without the need for any transmit RF chains. It has been 
proposed to enhance the coverage and capacity of the wireless communication system with low hardware cost and energy 
consumption [7-10]. In [11], the most important applications of the IRS for the 6G of communication networks are presented. 
Figure 1 shows when a user is located in a dead zone where the direct link between it and its serving BS is severely blocked 
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by an obstacle. In this case, deploying an IRS that has clear links with the BS and user helps bypass the obstacle via intelligent 
signal reflection and thus creates a virtual line-of-sight (LoS) link between them.  
Channel Estimation in IRS multi-user communications is a challenging task since it involves the estimation of multiple 
channels simultaneously. The direct channels between the Base Station (BS) and each user, the channels between the RIS and 
BS, and the channels between the RIS and each user. This task becomes more complex when the deployed IRSs are equipped 
with large numbers of unit elements having non-linear hardware characteristics. Furthermore, channel estimation has been 
widely studied in the conventional wireless communication system [12-15]. 

 
Figure 1. The user at the dead zone 

There are two main obstacles for conventional schemes to be directly applied in the RIS-assisted system. First, all RIS 
elements are passive, and cannot transmit, receive, or process any pilot signals to realize channel estimation. Second, since 
an RIS usually consists of hundreds of elements, the dimension of channels to be estimated is much larger than that in 
conventional systems, which will result in a sharp increase in the pilot overhead for channel estimation. Therefore, by 
exploiting the sparsity of the angular cascaded channel (the channel from the user-RIS and the channel from the RIS-BS), the 
channel estimation problem can be formulated as a sparse signal recovery problem, which can be solved by Compressive 
sensing (CS) algorithms with reduced pilot overhead [16-19]. The CS algorithms will be illustrated in the next section. The 
notations used in this paper are as follows.  
We use boldface to denote matrices and vectors. (𝑿)$, (𝑿)∗ and (𝑿)& stand for the transpose, conjugate, and conjugate 
transpose of a matrix 𝑿, respectively. Specifically, 𝐈( and 𝐈) denote 𝐾	 × 	𝐾 and 𝑀	 × 	𝑀 identity matrices, respectively. 
	diag	{𝜎45(. ), 𝜎48(. )…… . . 𝜎4:(. )}	denotes a diagonal matrix (.) with 𝜎45, 𝜎48 …… . . 𝜎4: at the main diagonal.	𝑇𝑟{. } and ‖. ‖?8  are 
the trace and Frobenius norm of matrix (.), respectively. 𝐶𝒩(0, 1) denotes a complex normal distribution with zero mean 
and unit variance. SVD denotes the singular value decomposition. a ⊗𝑏	denotes the Kronecker product of a and 𝑏. 
This paper was organized as follows: the system and channel models are analyzed in Section II. In Section III, the compressive 
sensing logarithms concepts and the channel estimation problem are presented. The computational complexity is discussed in 
Section IV. The simulation results are illustrated and discussed in section V. The conclusion is presented in section VI.  

II. SYSTEM AND CHANNEL MODEL. 

A. Massive MIMO- RIS Assisted System Model 
Figure 2 below shows the model of the Massive MIMO-RIS system with one base station (BS) with 𝑀-antennas and one RIS 
assisted with 𝑁-elements to serve 𝐾 single-antenna users [12].  

In this paper, an uplink channel estimation in single cell TDD massive multiuser MIMO system with the RIS-assisted system 
is considered. Due to the channel reciprocity property in the TDD system, the downlink channel can be obtained based on the 
uplink channel estimation. The received signal y	∈ 	∁I×5	 at the BS can be expressed by: 

                                                            𝒚 = ∑ M𝒉O,P 	+ 𝑮	diag	(𝜽)	𝒉:,PT𝑠P 	+ 	𝒘(
PW5 																																																																				(1) 
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Figure 2. The RIS-aided uplink multi-user transmission [12] 

where 𝐡O,P ∈ ∁)×5	is denoted by the direct channel vector between the 𝑘Z[ user and the BS, and 𝐆 ∈ ∁)×]	 is the channel matrix 
between the RIS and the BS. In (1), 𝒉:,P ∈ ∁]×5 is the received channel vector between the 𝑘Z[ user and the RIS. Let 𝑠P	is the 
symbol sent by the 𝑘Z[ user, θ = [𝜃5, 𝜃8,⋯ , 𝜃]]b is the reflecting vector at the RIS with	𝜃c representing the reflecting coefficient 
for the 𝑛 RIS element, and w ∈ ∁)×5 is the received noise vector at the BS. Note that 𝜃ccan be further set as 𝜃c=	𝛽c	𝑒g∅c, with 
𝛽c ∈  [0, 1] and	∅c  ∈ [0, 2π] representing the amplitude and the phase for the 𝑛Z[ RIS element, respectively. Let		𝑯P ≜ 
𝑮	𝑑𝑖𝑎𝑔	(𝜽)	𝒉:,P ∈ ∁)×P represents the cascaded channel between the 𝑘Z[ user and the BS via the RIS, and the received signal 
y in (1) can be also rewritten as: 

𝒚 = ∑ M𝒉O,P 	+ 𝑯PT𝑠P 	+ 	𝒘																																																																														(
PW5 									(2)  

In this paper, we assume that the direct channel 𝐡O,P is known for BS, which can be easily estimated as these in conventional 
wireless communication systems. Therefore, it only focused on the cascaded channel estimation problem which is defined as the 
channel coefficients from the user to the RIS and the channel from the RIS to the BS. 

B. Channel Model: 
The channel from the RIS to the BS is denoted by G ∈ 𝐶)×], which can be modeled by the widely adopted Saleh-Valenzuela 
(SV) geometric channel model [14] as follows: 

   𝐆	 = oI×p
qr

		∑ 𝛼tu
vwx

tu 	𝒃z𝜗tu
v|, 𝜑tu

v|~	𝐚(	ϑtu
v�, φtu

v�)𝐓	 			                                        (3) 

where 𝐿v denotes the number of paths between the RIS and the BS. a (·, ·) ∈ 𝐶]×5 and  b (· , ·) ∈ 𝐶)×5 represent the 
transmitting and receiving normalized array steering vector associated with the RIS and the BS, respectively.  𝛼t�v  is the 
complex gain consisting of path loss,	(	𝜗tu

v|	, 𝜑tu
v|) is the arrived azimuth (elevation) angle at the BS for the 𝑙5 path.  

(𝜗tu
v�, 𝜑tu

v�)	is the departed azimuth (elevation) angle at the RIS for the 𝑙5th path. For an  𝑁5 × 𝑁8 Uniform Planer Antenna 
(UPA), a (ϑ,𝜑) can be represented by: 

             a (𝜗, 𝜑) =  5
√]
	[𝑒��8�O	���(�)���(�)cu/� ]⊗[𝑒��8�O	���(�)cu/�]    (4) 

where 𝑛5 = [0, 1, · · ·, 𝑁5 −1] and 𝑛8 = [0, 1, · · ·, 𝑁8 −1]. λ is the carrier wavelength, and d is the antenna spacing usually 
satisfying d = λ/2. Similarly, for an 𝑀5 ×𝑀8  UPA (where M =𝑀5 ×𝑀8), b (ϑ, 𝜑) can be represented by: 

               b(ϑ,φ)	= 	 5
√𝑵
	[𝑒��8�O���(�)���(�)�u/�]⊗[𝑒�g8�O��c(�)���(�)��/�]    

(5)  

where 𝑚5 = [0, 1, · · ·,  𝑀5−1] and 𝑚8= [0, 1, · · ·,  𝑀5−1].On the other hand, the channel ℎ:,P can be represented by : 
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   (6) 

where 𝐿:Pis the number of paths between the 𝑘Z[and the RIS; 𝛼t�
:,P   represent the complex gain consisting of path loss, 

𝜗t�
:,P(𝜑t�

:.P) and it then arrived  azimuth (elevation) angle at the RIS for the 𝑙8th path. In this paper, we assume all users adopt 
the well-established orthogonal pilot transmission strategy for the uplink channel estimation and transmit known pilot symbols 
to the BS via the RIS over T time slots. Specifically, in the 𝑡Z[ (t = 1, 2, · · · , T) time slot, the effective received signal 𝒚P,Z 
∈ 𝐶)×5 at the BS for the 𝑘Z[ user after removing the impact of the direct channel can be represented in the time domain as: 

			𝒚P,Z 	= 𝑮		diag	(𝜽Z)		𝒉:,P𝑠P,Z +	𝒘P,Z   (7) 

which can be written as  

			𝒚P,Z 	= 𝑮		diag	(𝒉:,P)	𝜽Z		𝑠P,Z +	𝒘P,Z   (8) 

where 𝑠P,Z is the pilot symbol sent by the 𝑘Z[ user, 𝜽Z = [𝜃Z,5, · · · , 𝜃Z,]]	b is the 𝑁 × 1 reflecting vector at the RIS with 𝜽Z,c 
representing the reflecting coefficient at the 𝑛 RIS element (n = 1, · · · ,	𝑁) in the 𝑡 time slot,  𝒘P,Z∼CN (0,	𝜎8I)) is the M × 
1 received noise with 𝜎8representing the noise power. In (8), we denote 𝑯P = 𝑮 diag (𝒉:,P) is the cascaded channel for the 
𝑘Z[ user. According to the cascaded channel, we can rewrite (8) as: 

			𝒚P,Z 	= 𝑯P	𝜽Z		𝑠P,Z +	𝒘P,Z 
   
(9)  

After T time slots of pilot transmission, we can obtain the M × T overall measurement matrix 𝒀P = [𝑦P,5,………….., 𝑦P,b]  
by assuming 𝑠P,Z = 1 as 

𝒀P 	= 	𝑯P𝚯+	𝑾P (10) 

where Θ = [𝜽5,……………., 𝜽b] and 𝑾P = [𝒘P,5,……………… , 𝒘P,b]. In (10), the cascaded channel  𝐇¢ ∈ 𝐶)×] in RIS-
assisted systems shows the sparsity when transformed into the angular domain. Especially, by using the virtual angular-
domain representation, the cascaded channel 𝐇¢ can be decomposed as: 

	𝐇¢ 	= 𝑼)		𝑯	́	𝑼]
b  (11) 

Here 𝑯µ	denotes the M × N angular cascaded channel, 𝑼𝑴 and 𝑼]	are the M × M and N × N dictionary unitary matrices at the 
BS and the RIS, respectively. By substituting (11) into (10), we can obtain: 

𝒀P 	= 	𝑼)	𝑯·P𝑼]b 	𝚯+	𝑾P (12) 

Let denote 𝒀·P =(𝑼)
¸	𝒀()¸ as the T × M effective measurement matrix, and  𝑾¹P= ( 𝑼)

¸  𝑾( )¸ as the T × M effective noise 
matrix, (12) can be rewritten as a Compressive sensing (CS) model : 

𝒀·( = 	𝚯·	𝐇·(¸ +	𝐖·( (13) 

where 𝚯·P =(𝐔]b	𝚯)	¸ is the T× N sensing matrix. Unfortunately, it is difficult to estimate the RIS related to the cascaded 
channel 𝑯P due to passive RIS elements without signal processing capability. Therefore, Compressive Sensing (CS) is a topic 
that has recently gained much attention in the applied mathematics and signal processing communities. By exploiting the 
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sparsity of the angular cascaded channel (the sparsity of a signal is defined as the number of non-zero elements in the signal 
under a certain domain) the channel estimation problem can be formulated as a sparse signal recovery problem, and solved 
by the CS algorithms [16-19]. 

III. COMPRESSIVE SENSING (CS) METHOD 

The CS technique has been applied in various areas, such as imaging, radar, speech recognition, and data acquisition. In 
communications, compressive sensing is largely accepted for sparse channel estimation and its variants. With this in mind, 
compressive sensing promises to estimate the channel with much less pilot overhead or at higher accuracy with a limited number 
of pilots [16]. The channel estimation of the Massive MIMO System with an assisted System is formulated as a sparse signal 
recovery problem by exploiting the channel’s angular-domain sparsity. In this paper, the popular compressed sensing (CS) 
algorithms, such as the orthogonal matching pursuit (OMP) techniques are applied to recover the channel at a much reduced 
number of measurements [20]. Also, the Double Structure-OMP (DS-OMP) based cascaded channel estimation scheme by 
integrating the double structured sparsity into the classical OMP is discussed and proposed [21]. 

A. The Proposed Orthogonal Matching Pursuit (OMP) algorithm.  
In this section, we explain the compressive sensing method and how it is used in channel estimation. Then, the used algorithm 
(OMP) is illustrated, also showing the channel model and formulating the cascaded channel estimation problem. The greedy 
algorithm picks the best immediate choice and never reconsiders its choices. In terms of optimizing a solution, this simply means 
that the greedy solution will try and find local optimum solutions (which can be many). The most popular algorithms of this type 
are greedy algorithms, like Matching Pursuit (MP) or Orthogonal Matching Pursuit (OMP), that identify the nonzero elements 
of x iteratively. A major difference between OMP compared with MP is that OMP will never select the same index twice [20]. 
The most used greedy algorithm is an orthogonal matching pursuit (OMP) because of its low implementation cost and high speed 
of recovery. However, when the signal is not very sparse, recovery becomes costly. The idea of OMP is 

• An iterative algorithm: it finds x element-by-element in a step-by-step iterative manner.  
• A greedy algorithm: at each stage, the problem is solved optimally based on current information. 
§ From Equation (2), imagine the solution x has only 1 non-zero element, say the 3rd element is non-zero and has the 

value 0.47 as x =		[0, 0, 0.47, 0, . . . , 0]	b. 
§ The product Ax will be the 3rd column of A multiplied by 0.47.  Let 𝑎� denotes the ith column of A and 𝑥� denotes the 

ith element of x. The vector y = Ax we observed will be 𝑥¿𝑎¿ = 0.47𝑎¿. 
§ Now, to recover 𝑥 and given only (A, y), a key is to utilize the fact that x is sparse. 
§ In the example, y = 0.47𝑎¿, so y will have the highest correlation towards the 3rd column of A. 
§ We can compute the correlations of b to all the columns of A, and see which column gives the “highest correlation”. 

That column tells which index of x is non-zero. This is the “matching” part in OMP.  
§ The above is the idea behind OMP for 1-sparse x. 
§ For s-sparse x with s > 1, the same idea applies with one more step: each time a column in A is extracted, the effect of 

the extracted column on vector b has to be “removed” so that next time the same column will not be extracted again. 
This is the “orthogonal” part of OMP [19]. 

The description of the OMP would be: 
1. Initialize the set of non-zero elements as empty, the observations are set as the residual, r = y. 
2. Correlate all columns of A with the residual, 𝑨𝑯r, choose the largest element by magnitude and add its index to the set 

of nonzero elements. 
3. With the constraint that only elements of x are nonzero that have been added to the set previously, find an estimate 

𝑥Á	that minimizes|𝒚	– 	𝑨𝒙Å|𝟐. 
4. Update the residual as r = y – A𝒙Å. 
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5. Repeat steps (2 to 4) until either a known s is reached or the norm of the residual |𝑟|8		falls below a predetermined 
threshold [16]. 

B. Double-Structured Sparsity of Angular Cascaded Channels 
In this section, we propose the DS-OMP-based cascaded channel estimation scheme by integrating the double-structured 
sparsity into the classical OMP. This algorithm can be summarized in three key stages to detect supports of angular cascaded 
channels [21].  The description of the three stages would be: 

• Stage 1: Estimating the completely common row support	Ω:. Since 	{𝐇·P}PW5P 	 have the completely common non-
zero rows 	{𝐘·P}PW5P 		can be jointly utilized to estimate the completely common row support		Ω:. 

• Stage 2: Estimating the partially common column supports	{Ω�
t5	,����}tuW5

w . 

• Stage 3: Estimating the individual column supports. 

Based on the estimated completely common row support in stage 1 and the estimated partially common column supports in 
stage 2, it can be estimated the column support Ω�

t5	,P 	for each non-zero  row 𝑙5 and each user k. Through the above three 
stages, the supports of all angular cascaded channels are estimated by exploiting the double structured sparsity. The angular 
cascaded channel 𝐇·P	in (10) can be expressed as: 

𝐇·P = £
M	N
LÊ	L¡,¢

¦ ¦ ∝tu
v ∝t�

:,P 𝐛Ì (𝜗tu
v|,

w|,Í

t�W8

wx

tuW5

𝜑tu
v|)	𝐚4b(𝜗tu

v� + 𝜗t�	
:,P	, 𝜑tu

v� + 𝜑t�
:,P   (14) 

Based on (14), we can find that each complete reflecting path (𝑙5, 𝑙8) can provide one non-zero element for 𝐇·¢	, whose row index 
depends on  (𝜗tu

v| , 𝜑tu
v|)  and column index depends on  ( 𝜗tu

v| + 𝜗t�
:,P, 𝜑tu

v�  + 𝜑t�
:,P) Therefore, 𝐇·( has 𝐿v non-zero rows, where 

each non-zero row has 𝐿:,P non-zero columns. The total number of non-zero elements is 𝐿v𝐿:,P  which is usually much smaller 
than  M×N. 

 
Figure 3. Double-structured sparsity of the angular cascaded channels [21] 

We can find that different sparse channels 	{𝐇·P}PW5( 	exhibit the double-structured sparsity, as shown in Figure 3. Firstly, since 
different users communicate with the BS via the common RIS, channel G from the RIS to the BS is common for all users, 
and the row index is independent of the user index	𝐾. The non-zero elements of the angular cascade channel for all users lie 
on the completely common 𝐿v rows. Secondly, since different users will share part of the scatters between the RIS and users, 
{ℎP	}	PW5	(  may enjoy partially common paths with the same angles at the RIS. That is to say, for each common non-zero rows 
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𝑙5	(𝑙5 =1, 2…	𝐿v), 	{𝐇·P}PW5( 	 enjoy 𝐿Î	common nonzero columns. This is a double-structured sparsity of the angular cascaded 
channels. 

 

IV. COMPUTATIONAL COMPLEXITY ANALYSIS 

The computational complexity of the DS-OMP algorithm is analyzed in terms of three cases of detecting supports in [21]. 
First, the computational complexity which calculates the power of M columns of  𝑌ÐP of size Q × M for k = 1, 2, · · ·, K. The 
corresponding computational complexity is O (KMQ). Second, for each non-zero row  𝑙5 and each user k, the computational 
complexity O (N Q	𝐿:,P¿ ) is the same as that of the OMP algorithm. Considering 𝐿v K iterations, the overall computational 
complexity is O (𝐿v K N Q	𝐿:,P¿ ).Finally, the overall computational complexity O (𝐿vKNQ(		𝐿Î − 𝐿:,P)¿). Therefore, the DS-
OPM algorithm shows high complexity compared with the OMP algorithm. 

V. SIMULATION RESULTS 

In this section, the simulation results for the algorithms methods (the DS-OMP and the OMP) are provided. Initially, we are 
compared our channel estimation performance in terms of the normalized mean square error (NMSE) with the conventional 
Least Square estimator and benchmark. Moreover, the effect of important parameters is studied and simulated. For any 
compressed sensing-based method, the Oracle LS estimator provides us with the best achievable performance. Therefore, the 
NMSE performance of the OMP and DS-OMP algorithms versus the Oracle least-squares (Oracle-LS) estimator is simulated 
and compared with the conventional LS estimator to see how results are close to benchmark results. Initially, We set all 
simulation parameters as the number of the antenna element M = 64, the number of the RIS element N=256, the number of 
users K=16, the number of paths between the RIS and the BS 𝐿5 =5, the number of paths from the 𝐾Z[ user to the RIS 𝐿5 =8, 
the number of the common paths between the IRS and users 𝐿�  =4, and the number of pilots overhead is T. 
Figure 4, illustrates the NMSE comparison versus the signal-to-noise ratio (SNR) over practical values ranging from −20 dB 
to 10 dB.  The DS-OMP and the OMP algorithms can achieve better performance in terms of the NMSE compared to the 
conventional LS method, and we can see the DS-OMP is closer to the Oracle LS estimator than OMP, the difference between 
these logarithms is very small approximately 2dB. As a result, Despite this simple improvement, The DS-OMP logarithm is 
more complex than the others, for this reason, a trade-off can be made between the complexities versus the percentage of 
improvement in terms of NMSE. However, both the CS logarithms method is close to the Oracle LS estimator when SNR is 
higher. Thus, the best recovery/estimation performance is achieved. 
 

 
Figure 4. NMSE performance comparison against the SNR 



------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

Submitted 01 Nov. 2023; Final Version Received 19 Nov. 2023; Accepted 15 Nov.. 2023; Published Online in 09 Dec. 2023 
                www.ejeee.elmergib.edu.ly    Email: ejeee@elmergib.edu.lu      Phone No:++218913748971      Copyright © 2023 EJEEE 

  8 
   

Volume 2, Issue  3, Dec.  2023 

Channel Estimation for Reconfigurable Intelligent Surfaces (RIS) Assisted based on Orthogonal Matching Pursuit (OMP) 
algorithm 

 

 

Figure 5, shows the NMSE versus the pilot overhead T, i.e., the number of time slots T for pilot transmission. The pilot 
overhead required by the DS-OMP scheme is lower than OMP and both of these are lower than the conventional LS. Note 
that the NMSE for the LS is high and almost constant when pilot overhead is increased. Furthermore, when T= 32, the NMSE 
of the OMP is high compared with the DS-OMP, the reason for this, the CSI is not clear enough for the BS to estimate the 
channel in the time domain (TD) when the pilot is few (T= 32).  On the other hand, when the T is greater than 48 the NMSE 
of the two proposed logarithms and the Oracle LS estimator is very close to each other.  

 
Figure 5. NMSE performance comparison against the pilot overhead 

Figure 6 shows the CS-based schemes at different values of time slots (T= 32, 48, and 128). It shows the same idea as the 
previous figure, but in another way to make sure the extent of the difference between both algorithms used in terms of the 
pilot overhead. Therefore, the proximity in the NMSE value of these logarithms to the same value of T can be observed. 
Furthermore, when the SNR is greater than 5dB the OMP at T= 32 remains constant compared to the significant decrease in 
DS-OMP. So, the increase of the SNR doesn’t affect the NMSE of the OMP logarithm in the few values of the pilot overhead 
for the same reason in the previous part. In (T= 48, T= 128), the effect of increasing the SNR is obvious. Based on these 
previous results, despite this simple improvement of the DS-OMP logarithm, its complexity is high as previously mentioned, 
for this reason, a trade-off can be made between the complexities versus the percentage of improvement in terms of NMSE. 
Thus, the study of the effect of the most important parameters on the OMP logarithm method is allocated. 

 

 
Figure 6. NMSE performance comparison against the SNR with T∈ {32,48,128} 
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VI. THE EFFECT OF IMPORTANT PARAMETERS OF THE OMP ALGORITHM 

A. The Antenna Elements (M) Parameter  
In this section, the relationship between NMSE and SNR at different values of M (antenna elements) is studied when the other 
parameters are constant. Also, the effect of the performance in terms of the NMSE versus the number of time slots T is studied 
at different values of antenna elements M. Figure 7, shows the NMSE versus the SNR at different M ∈{16,64,128}, for both 
the LS and the  CS method, when M increases the NMSE of the CS method decrease at the same value of  SNR, but the LS 
method gives the same NMSE with different values of M, in general, the CS  method in a TDD system, the NMSE is inversely 
proportional to the number of  BS antenna M, and LS method independent on the number of  M. Therefore, in the RIS assisted 
communication system with massive antenna gives high performance in the channel estimation. 

 
Figure 7. NMSE performance comparison against the SNR with M∈ {16,64,128} 

Figure 8, shows the repeat of the first experiment, but versus the number of time slots T. At the lowest number of T (T= 32) 
note that the NMSE for CS method with M∈{64,128} is almost the same and less than M= 16. At T is greater than 32   the 
difference between the NMSE at M (64,128) is less than 5dB. This can be shown that an increase in the number of BS antenna 
M, gives a better error performance at a lower number of pilot overhead T, but when T is increased, the effect in M values on 
the NMSE is not significant. However, the LS method is independent of the number of M and the NMSE remains the same 
with an increase in T. 
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Figure 8. NMSE performance comparison against the number of the pilot overhead with M∈ {16,64,128} 

B. Number of Users (K) Impact 

In this section, the number of users K is studied to validate the simulation results. Figure 9, illustrates the NMSE of the CS 
method for estimating the cascade channel is not affected by the change in the number of user’s K, because the number of K 
affects the size of the cascade channel H matrix but the average of the error remains approximately the same, and in particular, 
the sparse channel matrices of the cascaded channels of all users have a common sparsity structure due to the common channel 
between BS and RIS. 

 
Figure 9. NMSE performance comparison against the SNR with K∈ {16,50,80} 

C. Number of IRS elements (N) Impact 

In this section, the number of elements in the IRS N is studied to validate the simulation results. Figure 10 below shows the 
impact of designing the number of elements in the IRS on the NMSE.  The NMSE gaps for all estimators of the OMP method 
using different value of N is very small (almost the same). But, they show significant improvement in the NMSE performance 
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at N= 64. This illustrates that the proposed method is not affected by the number of elements in IRS because, in a sparse 
matrix, not all elements are taken into account.  

 
Figure 10. NMSE performance comparison against the SNR with N∈ {64,128,256,400} 

VII. CONCLUSION 

The main concentration of this paper is to study the performance of the 6G uplink channel estimation, which is considered 
one of the most important challenges. First, the channel estimation solutions are used to reduce the pilot overhead by using 
compressive sensing algorithms. Then, the main algorithm OMP is simulated and compared with the DS-OMP. The main 
results can be summarized in the following points: First, the DS- OMP algorithm shows a small improvement in terms of the 
NMSE with the SNR and the pilot overhead requirement than the OMP algorithm. Furthermore, both algorithms give closer 
results to the Oracle LS. Second, the conventional LS shows high NMSE and huge pilot overhead requirements. Thus, it can 
be considered  an impractical  method in this topic. Third, despite this small improvement of the DS OMP logarithm, its 
complexity is high in calculation and operation. For this reason, the study of its performance was overlooked, and only the 
OMP performance was studied (less complexity) with the change in the important parameters with SNR and the pilot overhead 
requirement. Fourth, a high number of the antenna elements M of the OMP algorithm method gives high performance. 
Specifically, with high pilot overhead the effect of high M values on the performance is not significant. However, the very 
high number of antenna elements in M systems has a high cost. Fifth, the sparse channel matrices of the cascaded channels 
of all users might have a common channel between BS and RIS, this is not considered in the OMP logarithm. Thus the number 
of user K is not affected in the performance. Finally, the effect of the number of elements in IRS is insignificant because, in 
a sparse matrix, not all elements are taken into account. 
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